
Architecture

Vratislav Podzimek
Presented by

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Anaconda Installer

http://creativecommons.org/licenses/by/3.0/

Today's Topics
1. What is Anaconda?

2. Why (UI) rewrite

3. The NewUI

4. Architecture

a. Data representation

b. Hub&Spoke model

5. Threads and communication

6. Initial Setup

7. Addon development

OS installer for Fedora, RHEL and derivatives doing
everything else but installing

Python package (pyanaconda) + main script, dracut lib
and unit files

supposed to:

support both automated (kickstart) and manual
installations and also the combination of both

support graphical mode and text mode for old
sequential-only terminals (s390x)

be simple but in the same time complex

What is Anaconda?

decided at FUDCon Tempe 2011

main reasons:

non-modern UI born more than 10 years ago

UI-controlling logic mixed with the installation logic

basically a single thread stepping the Gtk main loop
manually

ksdata + installdata + UI elements attributes

gtk2 and pygtk based GUI mixing Glade files and
widgets created in the code

ncurses based text mode with separate code base

Why (UI) rewrite scary Anaconda

modular, extensible, multi-thread

Hub&Spoke as the basic model

graphic designed by Máirín Duffy

kickstart => self.data => kickstart

customization screens during package installation

code shared with the new purely textual text mode and
Initial Setup

more transactional

pyanaconda.storage separated as blivet

47899 insertions(+), 64380 deletions(-)

The NewUI no more scary Anaconda

Architecture

Data
all stored in the pykickstart.KSHandler instance

life cycle:

loaded from the kickstart file (if any)

updated with user's choices made in the UI

used to drive the installation

written out as kickstart file

tree structure

read, updated and written out also by the Initial Setup

setup and execute methods doing the installation logic

Hub&Spoke model

Hub&Spoke model
easy and fast access to everything

no need to visit every spoke

overview of the settings (updated by background
threads)

layout with great support for extensions

usable for both graphical and text mode

Hub, Spoke & Anaconda

Hubs
standalone spokes and hubs are dynamically collected
from the predefined places

categories and spokes are dynamically collected for
every hub

the Summary hub and the Progress hub

continue possible once all mandatory spokes are
completed

automated installations show summary and progress,
but continue automatically (unless user changes
anything manually)

Spokes
StandaloneSpoke and NormalSpoke classes together
with custom windows (Gtk widgets)

marked for use in the Initial Setup or not

supposed to contain only the UI-controlling logic,
installation logic in blivet's, pyanaconda's and
self.data's methods and functions

UI defined in a .glade file (all that is possible)

the showable property determines if the spoke should
be shown or not

Normal Spoke
basic building block of the NewUI

API defined attributes:

uiFile, mainWidgetName, category, icon, title,

API defined methods:

initialize and refresh

apply and execute

API defined properties:

ready, status

mandatory and completed

Threads and Gtk
Gtk main loop running in the main thread

two Gtk main loops running in separate threads crash
X server

locks allowing controlling Gtk from multiple threads no
longer supported (and never recommended)

GLib.idle_add and related functions are the only
supported way

decorators and functions to facilitate usage

@gtk_thread_wait, @gtk_thread_nowait

gtk_run_once

Threads and messages
threads for all long lasting actions

ThreadManager singleton and AnacondaThread class
facilitating logging and threads usage (also exception
handling)

two message queues

hubQ for spoke to hub communication

progressQ for reporting and updating installation
progress

experimental implementation also for the text mode
(GLib/Gtk main loop, almost always waiting for input)

Initial Setup
Firstboot replacement, but the old one has to survive
because of the legacy 3rd party plugins

basically only 40 lines of code reusing the code and
screens from Anaconda

reads kickstart file produced by Anaconda and writes
a new one at the end

coordinates screens with Anaconda and Gnome Initial
Experience

targeting F19

Initial Setup

Addons
many teams want to have something set in the
installation process (or first boot), but we cannot
develop and maintain all that stuff

examples of possible addons:

AD/kerberos realm join with realmd

SCAP security profile

subscription management

Emacs :)

Addon development
kickstart part (must be implemented):

class parsing lines from the special %addon section
and storing data from them as its attributes

lives in the self.data.addons.* subtree

methods to modify runtime environment (setup) and
configure installed system (execute)

UI part (optional):

GUI and TUI spokes reading data from self.data
and modifying them

can be marked also for the Initial Setup

altogether like 100 lines of code

Addon structure
a directory under /usr/share/anaconda/addons

top-level directory named after the addon
(e.g. org_fedora_hello_world)

subdirs for particular parts -- ks, gui, tui

placed to the installation tree by lorax or with
product.img -- still being decided

classes automatically collected and used if they are
subclasses of classes defined by the API

Addon HOWTO
well-commented Hello world addon [2]

sources of realworking instances (coming soon)

Anaconda Addon Development Guide [3]

questions and answers on the anaconda-devel mailing
list

anaconda, anaconda-widgets and anaconda-widgets-
devel packages installed

make runspoke target in the Anaconda's Makefile

Addons FAQ
Why such a bad name?

We don't have any better.

What happens if the addon for some %addon section
is missing?

Nothing. The %addon section is ignored and just
pasted to the resulting kickstart file.

Which languages are supported?

Python only.

Addons FAQ cont.
Why this %addon section marking the functionality as
being amended? Can't addon that needs only one line
just register a new kickstart command?

It is possible, but the problem is with the ksvalidator
tool that needs to distinguish between invalid
command and a command of a missing addon.

still work in progress

multi-thread, Gtk3 based, better user experience

better documentation, better maintainability

modularity

a lot of code shared between GUI, TUI and Initial
Setup

extensibility, easy to write addons

altogether less scary for both users and developers.

Summary

Links
[1] Anaconda/NewInstaller wiki

[2] Hello world addon

[3] Anaconda Addon Development Guide

[4] Anaconda sources

https://fedoraproject.org/wiki/Anaconda/NewInstaller
http://www.fi.muni.cz/~xpodzim/git/?p=hello-world-anaconda-addon.git
http://www.fi.muni.cz/~xpodzim/git/?p=anaconda-addon-guide.git;a=summary
http://git.fedorahosted.org/cgit/anaconda.git/

Questions?

vpodzime@redhat.com
anaconda-devel-list@redhat.com
#anaconda @ Freenode

Contacts:

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

mailto:vpodzime@redhat.com
mailto:anaconda-devel-list@redhat.com
http://creativecommons.org/licenses/by/3.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

