
Doing structured logging from kernel

For obvious reasons it’s impossible to use the sd_journal C API from kernel to
do structured logging. However, there are mechanisms for passing key=value
pairs as extra data for log messages.

The standard way of reporting/logging from kernel is the printk() function. As
its name suggests, it’s very similar to the well-known printf() function from
libc, but it has some specialties related to the fact that it’s actually being used
in kernel (address) space.

Actually, printk is a whole family of functions varying in the number and types
of arguments and the way variadic arguments are passed. The most important
way for our case is:

int printk_emit(int facility, int level,
const char *dict, size_t dictlen,
const char *fmt, ...);

facility and level are the common logging parameters just like the ones
passed to the syslog() function. fmt and the variadic arguments are like the
respective ones for printf()/printk() functions. Finally, the most important
ones for our case are dict and dictlen. The latter one of course just specifies
the length of the former one. And that’s needed, because the dict is a dictionary
of key=value pairs that are separated by \0-bytes.

Here’s a trivial example of a kernel module using the structured logging:

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Vratislav Podzimek");
MODULE_DESCRIPTION("Testing structured logging from kernel");

static int __init strl_test_init(void)
{

printk_emit (0, LOGLEVEL_INFO, "TEST=test\0TEST2=test2", 22, "Module loaded");
return 0; // Non-zero return means that the module couldn’t be loaded.

}

static void __exit strl_test_cleanup(void)
{

printk(KERN_INFO "Cleaning up module.\n");

1



}

module_init(strl_test_init);
module_exit(strl_test_cleanup);

and this is how the respective journal entries look like (in the JSON format):

{
"__CURSOR" : "s=7ab355e44efe46b38bc5db3bbaffa43e;i=2ecd4;b=b5cef4a829854151af7c0ee85b5a8ee3;m=119ce5d32c;t=554bd1bacd5a4;x=3cd94eca28194703",
"__REALTIME_TIMESTAMP" : "1500546073417124",
"__MONOTONIC_TIMESTAMP" : "75646751532",
"_BOOT_ID" : "b5cef4a829854151af7c0ee85b5a8ee3",
"PRIORITY" : "6",
"_MACHINE_ID" : "a128b9a3c70b44e6898984060de3a76f",
"_HOSTNAME" : "localhost.localdomain",
"_TRANSPORT" : "kernel",
"SYSLOG_FACILITY" : "0",
"SYSLOG_IDENTIFIER" : "kernel",
"_KERNEL_TEST" : "test",
"MESSAGE" : "Module loaded",
"_KERNEL_TEST2" : "test2",
"_SOURCE_MONOTONIC_TIMESTAMP" : "75638333296"

}
{

"__CURSOR" : "s=7ab355e44efe46b38bc5db3bbaffa43e;i=2ecde;b=b5cef4a829854151af7c0ee85b5a8ee3;m=119ce5f85f;t=554bd1bacfad7;x=b7727152b8156bca",
"__REALTIME_TIMESTAMP" : "1500546073426647",
"__MONOTONIC_TIMESTAMP" : "75646761055",
"_BOOT_ID" : "b5cef4a829854151af7c0ee85b5a8ee3",
"PRIORITY" : "6",
"_MACHINE_ID" : "a128b9a3c70b44e6898984060de3a76f",
"_HOSTNAME" : "localhost.localdomain",
"_TRANSPORT" : "kernel",
"SYSLOG_FACILITY" : "0",
"SYSLOG_IDENTIFIER" : "kernel",
"MESSAGE" : "Cleaning up module.",
"_SOURCE_MONOTONIC_TIMESTAMP" : "75638343612"

}

It can be seen that the entries come from kernel and that the TEST and TEST2
items are stored as _KERNEL_TEST and _KERNEL_TEST2. This is a transformation
that always happens for items coming from kernel. At the same time, keys coming
from user-space cannot start with the _KERNEL prefix. That’s how authenticity
of the data coming from kernel is ensured.

That means that any standard items/keys we specify for storage events/actions
reporting will have to be supported both in their kernel-space and user-space
forms, i.e. with the _KERNEL_ prefix and without it respectively.

2


